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Rotational modes of oscillation of rodlike dust grains in a plasma
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Three dimensional rotatory modes of oscillations in a one-dimensional chain of rodlike charged particles or
dust grains in a plasma are investigated. The dispersion characteristics of the modes are analyzed. The stability
of different equilibrium orientations of the rods, phase transitions between the different equilibria, and a critical
dependence on the relative strength of the confining potential are analyzed. The relations of these processes
with liquid crystals, nanotubing, and plasma coating are discussed.
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[. INTRODUCTION strongly affect the lattice dynamics, leading in particular to
new types of phase transitions, as well as affecting those
Recently, there has been an increasing interest in the progphase transitions already existing in lattices composed of
erties of structures involving colloidal charged particles levi-spherical grains. Earlier we have briefly communicated the
tating in a plasm&1—4]. The dynamic properties of the par- first results of the investigation of lattice oscillations in the
ticle motion, formation of colloidal crystals, and phase One-dimensional chain consisting of rod-shaped particles
transitions in plasma-dust systems are important fundamentb}0] where characteristics of the modes associated with the
questions related to the general theory of self-organization ifnotions and rotations of rods in theertica) plane of the
open dissipative systenid]. The cases already studied, ex- chain were obtained. Here, we present a full three-
perimentally and theoretically, mostly correspond to spheridimensional analysis of the rotatory modes in the chain of
cal dust grains, but there is a growing interest in the propertodiike particles, and analyze the critical dependence of the
ties of colloidal structures composed of eIongatedeqU||bflum and stability of such a chain on the external
(cylindrical) particles[5,6] levitating in the sheath region of Potential.
a gas discharge plasma. In these experiments, various ar-
rangements of such grains, levitating horizontdllg., ori- Il. BASIC EQUATIONS
ented parallel to the lower electrode and perpendicular to the
gravity force and vertically(i.e., oriented perpendicular to
the lower electrode and parallel to the gravity foréave

Each rodlike particle is modeled as a rotator having two
chargegand massegsoncentrated on the ends of the rod, see
been observed. Fig. 1, the upper charge beiqd, and the lower charge being

It is necessary to stress that for elongated particles, propr' For further simplicity, we assume that the charges are

erties of the plasma environment, and especially the sheaffPnstant and the masses are equal. The rqd of ldngton-
properties, are very importaf6]. Indeed, the sheath region necting these two cha_rges,. h?‘s. zero rad|u§ and mass. we
is characterized by strong inhomogeneities of the plasma pé:_or!5|der a one-dimensional infinite linear chain of. rodg, with
rameters. In contrast to spherical grains which can practicallgt}je'_r_Ce_nters of mass ev_enly separated by the (_1|std_nue
be considered as pointlike particles, rods can be affected b q|l|l_3r_|um, al_ong thex axis. Note that the approximation of
these inhomogeneitigs]. However, as a first approxima- n mﬂmtg chain is reaspnable fpr the ;everal do.zens or so
tion, we assume here the ambient plasma to be homogéj-USt par'ucle; that are qulved Ina typ|cal experiment, The
neous; in the case of experimental levitation in the Sheathgne-dmengmna! arraj{chaw) of rod§ Is also a gc_)od f|rs.t
this obviously restricts the possible rod lengihshould be app'roxmatlon since, first, SL.JC.h chains can arise in specially
less than the characteristic inhomogeneity Scatewever, designed experiments, and it is therefore important to estab-
this approximation can have direct applications even for
longer rods for thelpossible futurg experiments when the
rod structures levitate in plasma bulk as, e.g., under micro
gravity conditions. " am
The oscillations of chains of pointlike charged particles Y
have previously been analyz€d,8]. Unlike pointlike or /
spherical particles, elongated rotators exhibit a number of
additional oscillations related to the ndvotationa) degrees "
of freedom[9,10]. Lattices composed of rodlike particles R
will therefore exhibit rotational oscillation modes, analogous
to those exisiting in liquid crystaldL1]. It is natural to expect /@( n
that the excitation and interactions of all these modes will
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www.physics.usyd.edu.auiladimi FIG. 1. Geometry of the rod.
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lish the role of a coupling potential in the horizonyadlirec- d or or
tion on the stability of the chain, and second, although the i o 3
introduction of parallel chains would complicate the mode too" a0

structure further, the main mode characteristics for perturba-

tions propagating along the chain will survive at least in theand similarly for¢".

linear approximation. In order to compute these derivatives, we must write
The relevant forces are due to the external potentials anéown the displacement vectors from each charge to each

the interparticle interactions. The external poterdial,is a  Neighboring charge. LeR" locate the center of mass of the

combination of the potentials due to both gravitation and théth dust grain, relative to the equilibrium position. We then

external electrodes. The interparticle force is Coulombic indefineS" to be the direction of the upper charge relative to

nature. However, since the dust grain is shielded by the suthe center of mass, so in spherical coordinates,

rounding plasma, there is an exponential decay of the inter- _ Naim AN cim AN aim AN n
particle potential with distance, as follows: S'=(cos¢"sing", sing"sing", cosd"). (4)
r Hence, thenth upper char is at
o= e p(_u | @ PP 9Qa
4’7T80|r| Ap L
a"=nde +R"+ ES“, 6)

wherelp is the plasma Debye length, which is the scale over
which plasma shielding is effective, and as such, is a func- _
tion of the plasma parameteftemperature, density, efc. and the lower charg®, is at
Hence, we can form the Lagrangian
m drR™?2 | de¢n\?
= — — H ny 2
c Zz(dt) +22[( dt) (sing")2+

n

L
dan)Z} b“=ndex+R”—§S”. (6)
dt

We may now define the four displacement vectimosn the

_ charges on then(+ 1)th grainto the charges on theth grain
(; Qa(ba+; Qa¢b+; qu)a"'g qu)b as fO||OWS,
L
+2 Qaq)ext"'z qu)ext ’ (2) rg;:_dex+(Rn_Rn+l)+E(Sn_sm—l)y (7)
n n

where the sum is over all the particles, dnid the common
rotational inertia of each particle. Heteis the angle the rod
makes with thez (vertica) axis, and¢ is the angle the pro-
jection of the rod onto th&-y (horizonta) plane makes with
the x axis (the direction of the chain of particlgssee Fig. 1.
The first two terms on the right-hand side correspond to the
kinetic energy, and terms lik®,®, describe the interaction e n onen L 1

on the upper charg®, of the nth particle with the potential fap=—de+(R"=R"™H—-5(S'+8"). (10

&, due to the upper charg€, of all the other particles, etc.

(The force between the upper and lower charges on a singi§milar equations exist for the vectors from the charges on
particle is, of course, balanced by the stress in the rod conyg (h—1)th grain to the charges on tinh grain.

necting them.Note the summation implied in the calculation  Tpe external potential can be approximated by a parabolic
of &, ,b for thenth particle is, in principle, over all the other otential for small oscillations, whose minimum lies at the
particles. Howevgr, we shall only aII_ow Fhe two nearest.anter of mass of a rody& 0,z=0). The assumption of an
neighbor interactions in our approximation due to thejxfinite chain in thex direction removes the need for a con-
screened Coulomb nature of the interparticle interaction. '”Tining potential in that direction. The external potential is
deed, we would not expect that highly charged rods can apnerefore assumed to act in both thévertica) andy direc-

pear at distanc_es significantly Ies_s than _Debye length. NOtﬁons, such that the potential energy of the rod, with coordi-
that the separation between rods is an adjustable parameterjfieg is

our calcualtions. This separation depends on the parameters

of the plasma: in the experimerj#], it varies from 1 mm to Qa®ex( ") + QpP ey ") =k Y2+ k, 22, (11

0.3 mm. This scale length is more than or of the order of the

Debye length for the experiments, and this justifies our aswhere {/,z) are the coordinates of the upper cha@g.

sumption of the nearest-neighbor interactions. Note that they component of the external potential is purely
Modes associated with the center of mass motion arelectrical, and the component is a combination of the elec-

analogous to those in chains of spherical partiffe8,10 so  tric and gravitational potentials.

here we investigate the rotational behavior, unique for rod- Use of the chain rule now gives rise to the following

like particles, in detail. The Euler-Lagrange equations of anequation of motion forg", including only the two nearest

gular motion can then be written down for théh particle, neighbor particle interactions:

L
rg;:—dex+(R“—R“+1)+E(s”+s“+1), 8

L
rgg=—dex+(R”—R“+1)—E(S“—S“”), 9)
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I[6"—($™)?sin 6" coss"]

Qal | Pa(rza
=- |rT(raaxcos«ﬁ”cos¢9”+raaysmgi:”cosﬁ”—ra‘.ﬂyn0”)
aa
D(r3a)
&(raaxcoswcos&”+r2;ysm¢”cosﬁ”—rg;zsinen)
Iraal
p(Tba) : :
|b ] (T bax COS@" cosO"+rp . sing" cose"—rp, ,sin6")
"
d(rpa) o . QpL D g (@" D (D)
B |a(baxco&;&”coa9”+rga,yS|n¢“cos¢9“—rga’zsm0“)+T[a<—>b]—Qa ;);n —Qp :;n :
MNoa

(12

where®’ (r)=d®/d|r|, and wherd a«—b] is shorthand for another set of terms which are identical to the first set in square
brackets on the right-hand side, but wiaheplaced byb.
The corresponding equation for the azimuthal angleis

. —_ : - Qal | P4(rad N .
I sind"(@"sin@"+2¢" coss"o") = — > —|r”+ (— raax5|n¢“sm0”+rgaycosd)”smen)
aa
y(rhz)
|ar a|a (—TaaxSing"sing"+rg,  cos¢"sing")
aa
qﬂ(rn+) ’(rn_)
+ bnfa—( bax5|n¢”3|n0”+rbaycos¢“sm0”)+%(—rﬂ;xsinqsnsinan
ba |rba|
_ le— ‘9(Dext(an) ‘?(I)ext(bn)
+ n nej e = _ _ .
Fbay COS¢"sING") |+ ——[a~b]—Qa e Qo YT (13)

Note that these equations are extremely nonlinear, involvindgpng and complicated, and is written down in the Appendix,
sine and cosine dependence on angles, and exponential aBd. (A1l). We simply note that it is coupled and has only a
inverse distance dependence contained implicitly in the poaumerical solution.

tential terms. Moreover, thé and ¢ behavior is coupled. In We next determine the commewquilibriumorientation of
order to proceed, we mubhearizethese equations about an the particles. Thus we set"=¢e"t1=¢""1= "= 5"*1
equilibrium position. We shall call the equilibrium colatitu- = ,"~1=0, and let the acceleratiof" be zero. We find

dinal and azimuthal angles, about which we consider small
perturbations, ag, and ¢, respectively, which are common

to all particles. The analysis then proceeds as followse let Qal
be a small perturbation of, so thatd"= 0y+ €". We may 2
then approximate

Dy(rpy)  Py(rp;)

Irbal [rbal

o M@ ie(b)
c0s6"=cosfy—sin fye", (14) e Qb 20

d cos¢g cosfy—[a—Db]

=0, (16)

H nN_ o n
Sing"=sin b+ cosfoe™, (15 where each term is to be evaluated at the relevant equilib-

rium orientation. This tells us the form of external potential
and similarly for¢ by letting » be a small perturbation from required for an equilibrium orientation of@§,¢o). How-
¢o. Note that the linearizing process for terms like ever, as indicated earlier, the external potential of relevance
O (rpXy/|rps], in fact, involves taking the zeroth- and first- to us is parabolic about the center of mass, Ed).
order terms in a Taylor expansion of six variables; namely, Thus the external potential derivatives at each charge
€, "t "L " "L "1 The full result for@" is  should vanish at the equilibrium; this occurs only atytend
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cases. Note the presence of7?'— "*1— "1 in the first
term. This term will vanish if all the rods rotate together. If
we consider the upper charg€s all moving together, it is
apparent that this interaction should vanish as a result of the
(n—1)th and 6+ 1)th charges pushing in equal and oppo-
site directions. However, in the second term, the tern? 2
+ 7"+ "~ will not vanish. This is a consequence of the
Q, fact that as the rods rotate, the cross interaction bet@gen
and Q,, (on adjacent rodsincreases as they come closer
together. Theif+1)th and 6—1)th contributions become
unbalanced.

To investigate the existence of an oscillatory solution, we
compute the Fourier transform of E@L8), which gives the
frequencyw as a function of the wave numbérin the x

FIG. 2. The three equilibrium orientations of the rodlike dust
grains.

z axes for a potential of the forrfl1), unlessk,=k,. Simi-
larly we must ensure

direction:
Py(rpa)  Pp(rpa)
- = " Q ’ .
] roo| | @ cosocosto=0. 17 |02= 412 Qu(d) ~ | Pf(Ly) [sirF(kd/2
The result is that equilibria exist in only the following orien- d2L2 Q.
tations (unless ky=kK,); (6q,¢0)=(0,¢0) (With ¢, arbi- +—2[Qa¢>ﬁ(Ld)—L—®t’,(Ld) cos(kd/2)
trary), (7/2,0), or (w/2,7r/12), which we draw successively Ly d
as shown in Figs. (2)—(c), respectively. Ifk,=k,, equilib- 2
rium exists for the orientation 6y,7/2), where 6y is +[Qa<—>Qb]_7ky. (19

arbitrary.

Recall that the chain of rods is located along xhexis, so Now the Debye-Coulomb potential in E€L9) has deriva-
o - ) dl(r)=- 1+ —

the second equilibrium have already been considered in Ref. Are|r|? \b

[10], and oscillations in¢ about that equilibrium can be

that the first and the third equilibria are essentially the sameﬁveS

the only difference lying in the interaction with the external

potential. The analysis of oscillations about these equilibria

shall occupy the bulk of this paper. Oscillations drabout Qa ( Ir] ex;{ _ ﬂ) (20)
\p/’

obtained simply by exchangirlg, andk,. Since¢ is unde- Q NG If|

fined for a vertically oriented rod, we concentrate here on the dU(r)= —3< 24214 _) ex% — _) . (21

horizontal equilibrium case/2,7/2). 4req|r]? No )\ZD Mo

. AZIMUTHAL MOTION Hence the produc®Q,®; is negative, whileQ,®} is posi-
] . . o _tive, as is true for any potential that falls off with distance.
The perturbation equation describing small oscillations inThe result is that the coefficients of the oscillatory sine and
azimuthal angle$” about the equilibrium Fig. &), 6  cosine terms in Eq(19) are always positive. Thus the dust
=ml2, ¢=m/2, can be obtained from E¢A1) (see the Ap-  particles would always exhibit stable oscillations, except for
pendix for the 6 perturbation equation by rotating theand  the presence of the termk,L2/2 from the external poten-
zaxes about the axis, so the nevz-axis lies along the ol¢  tjal, which acts to pull the grains away from this equilibrium
axis. The equilibrium is now, in terms of the new polar g thex axis (wherey=0). These competing terms may then
angles, ¢=0,4,=0), and the perturbation; in the old give rise to regions of stable behavior and regions of un-
angle ¢ is the negative of the perturbation’ in the new  stable behavior. Recall that the moment of inertialis
angled’. The resulting equation for is =mL?/2. Hence the factdr? cancels throughout and is only
present, implicitly, through the quantity, . We may plot the

; L2 Qa dispersion relation, by selecti ical values of th
L= — = O.®"(d)— 2! (L) |(270— pn+1_ pn-1 ispersion relation, by selecting some typical values of the
g 4 | Qa®ald) d ol d)}( e 7 parameters involvedm=10 kg, Q=10%e-10'e, and
- Ap=300um. For the casal~\p, and for the particular
dL°| Qa ., Qa , n. on+i choice of the external potential paramekgr=10"' kg s 2
—— | 7 Pp(La) = 5 Pp(La) |(27"+ 7 ; : : :
4 L2 L3 (which can be controlled in an experimgnthe resulting

dispersion relation is shown in Fig. 3.
ne1 " Note that the vertical axis is for the square of the normal-
+7" ) +[Qa Qul+ 5 ky 7" 18 jzeq frequency ¢/wg)?, Wherew, is a typical dust plasma
frequency withwi=3Q?% (4meo,mA3), which is normally a
where L§=L2+d2. Thus thee and » behaviors decouple. few hundred radians per second. The horizontal axis is a
(In fact, they decouple in all the above three equilibriumnormalized wave numbek\ for the first Brillouin zone.

LZ
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FIG. 3. Normalized frequency squared versus normalized wav

number for perturbations in the angle traveling in thex direction.
The equilibrium orientation isfy= 7/2,po= 7/2). Herewy is the
dust plasma frequency=\p , andk,=10"""kgs 2.

This plot clearly shows stable regions, correspondingto
>0, and unstable regions correspondingvfo<0 (i.e., » is
imaginary).
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14 1 ! 1 L2 4
Pa(d) = §Pald)— 5 5 P3(d)

1 2
—Mw°=Q, "

4

2

1L2 2
+§¥®a(d)

L
+QaF

1 ! l ”
SPUD— GOU)

1 " 1
+ §q>a(d) cog(kd/2) — Zky. (23

Here the first term on the right-hand side is independent of
the wave number, while the second is not. We can understand
this physically as follows. WherL{d) is small, a rotation of
thenth dust grain sets up oscillations since it becomes closer
to the center of masand hence the dust particle on avenage
of the relevant nearest neighbor, regardless of the neighbor’s
orientation. This is embodied in the first term. Of secondary
importance is the actual orientation of the neighbor, which is
seen in the term involving wave number: note ttfefactor,
which shows that this correction is small.

For a typical choice of the wave number, we can plot
(w/ wg)? as a function of a normalized interparticle distance

d/\p (sinced is typically of the order of the Debye length

IV. COLATITUDINAL MOTION

as shown in Fig. 4. Clearly, at close interparticle distances \yie now investigate the behavior of the perturbatioaf

the motion is_stable, as the particles_oscillate under theifye colatitudinal angl®, recalling thate and 7 completely
mutua! repuls.|on. However, at Iarge distances the eXtemfﬂecouple in the linear approximation. The equation of mo-
potential dominates, and the motion becomes unstable. Thig, in the secondhorizonta) equilibrium case is

is a result of the interparticle force decreasing with increas-

ing distance. Note that this instability willlways arise at ) L2 Q,
large distances, ik,>0. We reiterate that this horizontal ~ 1€"=— ZF(I);(d)(ZG"—GnH—Gn*l)
motion is identical to the vertical case under the interchange
kkaZ' L2 Qa ’ n_ _n+l_ _n—-1
It is useful to consider the case of small sized rods com- vy L—dq’b(l—d)(ZG —€ =€) +[QaQp]

pared with the interparticle separatiar<d. Then

=l

It then makes sense to tak@,=Qp since Q=Q(z) for

Lo=d 1+(§) ~d (22

2

L
= (k=€ (24)

Note that this timeall the dust particle interaction terms are
of the form 2"—¢e"*1— "1, and so the net forcéapart
from external influencgsis zero if the rods rotate together.

grains in a vertical sheath potential, and the upper and loweFhis expresses the fact that each plagieen by ¢o= /2,
charges will essentially be at the same vertical position. Onand all , equa) is identical. Moreover, in the absence of an

finds

06 08 1.0 16 18 20

T2 14
d/Ap

effective external potentialone in which k,=k,) there
would exist equilibria at any, value, since we would have
no preferred direction. The stability of cases such as these
will be pursued in the following section.

Fourier transforming Eq(24) leads to the following dis-
persion relation:

| w2=12 %cp;(d)— S—:@k’)(Ld) sirP(kd/2)
2

L
+[Qae> Qo+ 5 (ke—ky). (25)

Once again, note the oscillatory dependence on the wave

FIG. 4. Normalized frequency squared versus interparticle disnumber. The first term on the right-hand side is this time

tance for perturbations in the angle traveling in thex direction.
HerekAp=8, and the other parameters are same as Fig. 3.

negative sinceQ®’'(r)<0 andd<Lg. Thus the dust parti-
cle’s mutual repulsion causes instability. This results from
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2 down at large amplitudes. In order to examine what ensues if
w2? /\ /—\ the rods lie near an unstable orientation, we must consider
w20 what will happen physically: the rods will, in fact, move in

°_1 opposite directions to move away from one another. Thus on

- the average, the even rods, say, will move clockwise and the

odd rods counter clockwis@r vice versa Hence it may be

-3 that there exists some intermediate value of stability between

-4 the vertical and horizontal. Our analysis is now different

-5 from earlier, since we are allowing alternate rods to have
65 65D AR R opposite equilibrium orientations. By considering the vertical

12d /1164 case, this corresponds to equilibriafgtand — 6, alternately.
Let the even rods be described by perturbatiehsn 6 as
FIG. 5. Normalized frequency squared versus interparticle disbefore, and the odd neighbors % and ".

tance for perturbations in the angfe traveling in thex direction. The equilibrium condition is now found to be given by
Herek\p=8.

the Q, @, interaction pushing away from equilibrium, domi- Qa®4(R)+Qp®p(Ry)  Qp®p(Ry)  ky—k,
nating the cross interactio®,®,, that pushes back. Once Sin(26o)| — IR, + R, 8

again it is the fact that the dust grain’s Debye-Coulomb po-
tential falls off with distance that a net force results. Note the =0, (27
competing terms from the external potential. In the horizon-

tal case, one needs>Kk, for the possibility of stability(of where R; = JdZ+LZsir? ¢, and R,= JdZ+LZcod 6y The
course, wave number gaps are still posgilddote that simi-  first order perturbation equation is

lar dependence exhibits pairs of unbound spherical particles

levitating in the confining potential ik andz directions[12].

We also recall that the interchangg—k, gives the vertical L L2 QuOLR)+Qp®L(R)  2Q.PL(R,)

equilibrium case. By selecting,>k, , the dispersion rela- I§”=Z[— R + R }

tion will be qualitatively the same as in Fig. 3. L 2
However, the behavior of the frequency as a function of X[2 082 6)"— "= 7" 1]

interparticle distance shows a noticeable difference to the
azimuthal oscillation case, as shown in Fig. 5. Note the re-
versed characteristic, where stability now increases as the ~ 7 (ky~kp)cog260)£" (28)
particles get further apart. We explain this as follows: at
close distances the motion is highly unstable, since the re- Thus equilibrium occurs if§,=0 (the vertical casg or
pulsion due to th&,®, andQ,®, terms is so strong. How-  g,=7/2 (the horizontal cage or if the term in brackets in
ever, in the far region, it is the sign &f,— ky which deter- Eqg. (27) vanishes. In the case wheke= ky! and whenQ,
mines stability. Again by taking <d, we aproximate =Q,, an equilibrium occurs a#l,= /4, when the charges
are farthest away from one another, and neighbors are out of
phase bymr/2. In this case the right-hand side of the pertur-
bation equatior{28) vanishes; this is because for an external
potential symmetric about theaxis, an arbitrary rotation of
6, may be made as long as neighbors are at right angles to
1 each other. If the potential is not symmetrik, ¢k,),
+ §(kz_ ky).- (26) equilibria may occur at intermediate angles different
from 6y= 7/4.

We see that the oscillations become solely due to the confin- Hence the described system of rods can undergo phase
ing potential asL—d. In other words, the two competing transitions from one state to another, i.e., vertical to horizon-
terms in the coefficient of sftkd/2) in Eq. (26) have can- tal and vice versa, or to an intermediate equilibrium, depen-
celed one another. Note, however, that it is not strictly validdent on the easily adjustable external potentials. In fact, it is
to letL=0, since we cannot meaningfully discuss rotation ofa hatural extension to see that this is also true of the third

L2

1, L[ 1,
SMo=—-Q,— <I>a(d)—a<1>a(d)

5 = sirA(kd/2)

a rod with no length, and we have already dividedLFy equilibrium case mentioned in Sec. Il, corresponding to the
equilibrium at @/2,0). Transitions between the vertical and
V. INSTABILITY horizontal equilibria have been observed in experimgdis

This process has a relation to processes in liquid crystals
We now address the important issue of what happens if11], where a state of matter exists between the solid and
the motion is unstable. Instability implies that the rods mayliquid phases, wherein rod-shaped molecules exhibit a partial
switch from the horizontal to the vertical equilibriufor vice  alignment, rather than a rigid array seen in crystals. The di-
versa depending on the sign &, —k, . However, our analy-  rection of this partial alignmeriand phasecan be altered by
sis is only valid for small perturbation angles, and breaksan external influence.
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VI. DISCUSSION AND CONCLUSIONS plasma frequencysy, as can be seen from Figs. 3—-5. We

The ab vsis has | dani tant real feat note that the oscillations of rodlike particles also show
€ above analysis has ignored an important real featurg, , oo associated with the motion of the center of mass of

of plasmas: friction. The motion of dust particles through theye 1445 Dispersion characteristics of these modes are simi-
plasma medium will induce a resistive response from thgy, g those of spherical particles of comparable mass and
plasma. Friction’s importance depends on the plasma parangharge, see Ref.10], namely, the optic-mode-like “bend-
to neutrals will dominate. If the ionization is hlgh, then the and the acoustic mode related to horizorialthe direction
friction from ions also becomes important. Now since theof the mode propagatigrmotions of the centers of mass.
Lagrangian formulation cannot deal with nonconservativeThe characteristic frequency of the first mode is determined
forces such as friction, we can only include friction after weby the confining potential in the vertical direction; in experi-
have ascertained the equations of motion. ments, and this frequency can be of the order of or higher
Thus, in the linear approximation, we may include a ge-than the dust plasma frequency depending on the particular
neric y# term, wherey is the frictional constant. Thus Eq. €xperimental condition$13]. The characteristic frequency
(24) becomes range of the acoustic dust-lattice mode is lower, ranging
from zero to wy. The azimuthal and colatitudinal modes
showed opposite characteristics in the near and far interpar-

L2Q ticle distance regimes, respectively. The rods were then

le"+ ye'= — — J@é(d)(zen_enﬂ_en*l) shown to move, or switch, to the relevant equilibrium, de-
4 d pendent on the confining parameters. This is an example of a
L2Q phase change phenomenon which is analogous to that ob-

+— ZBPI(L)(2eN— Nl 1 served in liquid crystals. The inclusion of the resistive effect

p(La)(2€"—€ € ) e / : . .
4 Lyg of friction was an immediate and straightforward extension.
L2 The ability to line up rods in different directions, by al-
+[QaQp]— — (k,—k,)€" (29)  ternating the relative sizes of the confining potentials, is a
2 2 Ve powerful tool. This can be of use in, for example, plasma

coating, if rod-shaped objects are used as the basis to give
and the new frequency expressed in terms of the old one strength to a material. The nanotube industry is another new
becomes area where this may find application. The elongated shape of
these carbon based molecules shows an obvious connection
to our discussion of “rods,” although the particular rod
. y shape analyzed in this paper is just a first approximation to
=—iz-+oi— Y42, (30  the true geometry of a nanotub#4].
2l We have neglected here some other plasma effects, such
) ) . _ _ as the production of wakes due to the ion flow to the elec-
where the term—iy/2| is associated with damping, and trode. Since we consider dust charge interactions primarily in
Vo?— 21417 shows a decrease in frequency. Note that criti-the horizontal plane, the modification of the Debye potential
cal damping occurs whew?=y%/412. Further generaliza- by the wake is only weak. We note that the ion wake effects
tions of the main results taking into account friction arecan cause instabilities in the horizontal lattice wave propaga-
straightforward. We note that the actual friction with neutraltion; for spherical particles, this was shown in Réf]. It is
particles is geometry dependent. In the case of the adoptethtural to expect a similar type of instability for the arrays of
model of a rotator with two spherical ball-like particles con-rods, and this is an interesting topic for future research. Also,
nected by the infinitely thin rod, the friction constajgmma  for vertically oriented chains of dust charges, the wake po-
which is determined by the neutral gas pressure and the croéghtial has large effectéfor chains of spherical grains, this
section(i.e., geometryis just twice that of the single spheri- Was demonstrated in RefL6]). Finally, for structures levi-
cal particle. In the case of the real rod geometry with finitetating in the plasma bulkas, e.g., under microgravity con-
rod radius, the friction constant will naturally depend on theditions), the ion flow is absent.

articular geometry. Note that the wave damping is also There are several possibilities for further work. First, the
b I y PIng Iﬁ‘harge is, in fact, a function of vertical heigh=Q(z).

ext, the extension to a two or three-dimensional array may
We began by noting that in a plasma, dust particles usul—ead to furtk;erhmtereds_n?gbr?.sultsi An mpor?nt ia(ter;rsllontlhs
ally acquire a negative charge, and so can levitate if a negé(—) a general charge distribution along the rod, rather than the

tively biassed electrode is placed below them. The case ofgvo—point particles we have consi_dered. _Finally, by including

one-dimensional chain of levitating rod-shaped particles wa _|gh_er order terms in th_e _analy5|_s, nonlinear waves and ex-
investigated; we found that the different rotational modes ofitations, as well as their interactions can be investigated in
oscillation decoupled in the linear approximation. The spe—SUCh chains.
cific behavior of the modes was analyzed through the disper-
sion relations. An oscillatory dependence on the wave num-
ber, and a critical dependence on the relative strengths of the
confining potential were found. The characteristic frequency This work was supported by the Australian Research
range for these oscillatory modes is of the order of the dusCouncil.
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APPENDIX

The first-order equation of motion far, about an arbitrary positiondg, ¢) is as follows:

Qi
2

le"=

L ” L ’ n n+1 n—-1
E(I)a(d)—E(Da(d) [cospycoshy(2e"—€" =€)

L
—singg sin (27" — 7" 1= " 1)]cos¢, cosby+ E@;(d)(Ze“— "l

Py(rpa) . . L
+ ————| —d cos¢g, cosby+d coSdy SinBpe”+d sin g cosbyn"— = (e"— ")
Irpal 2
a
Pp(rpa) . . L
+ ————| d cos¢y cosby— d COSpg Sin Hye"—d Sin o coshy " — = ("— e 1)
Loty 2
a

L[ ®h(roa)  Pylrps
—d cos¢g cosby( e+ e”“)z EE - o Mbax COSho COSHy+ 1, SiNhg COSHy— T, , SiN )
ba ba

L
+d cos¢y cosfy( "+ e”*)z

bax COS¢g COSHy+ T\, SiN g COSH— T, , SN Bg)

dy(rhy) ®g<r2a>) -
_ (I’

real?  Irpal?

L
—d cos¢g cosby( "+ " 1)5

+ +
Op(ri)  Py(rh; )

rhal?  Irpal

L
X (=T paxSiNgoSiN g+, COShoSiNg) +d COShg COS( 7"+ 7;”‘1)5

Pi(ria) <I>é,<raa>)

rhal?  Irgal?

n n
X (—TpaySiNgoSiNOy+rp,, COShg SN o) |+ %(aeb) - Qa&(b;’;(na ) Qb &(D;);(nb ) , (A1)
where each of the above terms, such'@is, is to be evaluated atff, ¢).
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