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Rotational modes of oscillation of rodlike dust grains in a plasma
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Three dimensional rotatory modes of oscillations in a one-dimensional chain of rodlike charged particles or
dust grains in a plasma are investigated. The dispersion characteristics of the modes are analyzed. The stability
of different equilibrium orientations of the rods, phase transitions between the different equilibria, and a critical
dependence on the relative strength of the confining potential are analyzed. The relations of these processes
with liquid crystals, nanotubing, and plasma coating are discussed.

DOI: 10.1103/PhysRevE.68.026402 PACS number~s!: 52.35.Ra, 52.35.Kt, 52.25.Vy
ro
vi
r-
se
n
n
x-
er
e
ed
f
s

th
o

ro
ea
n
p

al

-
og
at

fo

ro

es

r

s
u

wi

to
ose

of
the
e
les
the

e-
of

the
al

wo
ee
g
are

. We
ith

f
so
he
t
ally
tab-

p:
I. INTRODUCTION

Recently, there has been an increasing interest in the p
erties of structures involving colloidal charged particles le
tating in a plasma@1–4#. The dynamic properties of the pa
ticle motion, formation of colloidal crystals, and pha
transitions in plasma-dust systems are important fundame
questions related to the general theory of self-organizatio
open dissipative systems@4#. The cases already studied, e
perimentally and theoretically, mostly correspond to sph
cal dust grains, but there is a growing interest in the prop
ties of colloidal structures composed of elongat
~cylindrical! particles@5,6# levitating in the sheath region o
a gas discharge plasma. In these experiments, variou
rangements of such grains, levitating horizontally~i.e., ori-
ented parallel to the lower electrode and perpendicular to
gravity force! and vertically~i.e., oriented perpendicular t
the lower electrode and parallel to the gravity force! have
been observed.

It is necessary to stress that for elongated particles, p
erties of the plasma environment, and especially the sh
properties, are very important@6#. Indeed, the sheath regio
is characterized by strong inhomogeneities of the plasma
rameters. In contrast to spherical grains which can practic
be considered as pointlike particles, rods can be affected
these inhomogeneities@6#. However, as a first approxima
tion, we assume here the ambient plasma to be hom
neous; in the case of experimental levitation in the she
this obviously restricts the possible rod length~it should be
less than the characteristic inhomogeneity scale!; however,
this approximation can have direct applications even
longer rods for the~possible future! experiments when the
rod structures levitate in plasma bulk as, e.g., under mic
gravity conditions.

The oscillations of chains of pointlike charged particl
have previously been analyzed@7,8#. Unlike pointlike or
spherical particles, elongated rotators exhibit a numbe
additional oscillations related to the new~rotational! degrees
of freedom @9,10#. Lattices composed of rodlike particle
will therefore exhibit rotational oscillation modes, analogo
to those exisiting in liquid crystals@11#. It is natural to expect
that the excitation and interactions of all these modes
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strongly affect the lattice dynamics, leading in particular
new types of phase transitions, as well as affecting th
phase transitions already existing in lattices composed
spherical grains. Earlier we have briefly communicated
first results of the investigation of lattice oscillations in th
one-dimensional chain consisting of rod-shaped partic
@10# where characteristics of the modes associated with
motions and rotations of rods in the~vertical! plane of the
chain were obtained. Here, we present a full thre
dimensional analysis of the rotatory modes in the chain
rodlike particles, and analyze the critical dependence of
equlibrium and stability of such a chain on the extern
potential.

II. BASIC EQUATIONS

Each rodlike particle is modeled as a rotator having t
charges~and masses! concentrated on the ends of the rod, s
Fig. 1, the upper charge beingQa and the lower charge bein
Qb . For further simplicity, we assume that the charges
constant and the masses are equal. The rod of lengthL, con-
necting these two charges, has zero radius and mass
consider a one-dimensional infinite linear chain of rods, w
their centers of mass evenly separated by the distanced in
equilibrium, along thex axis. Note that the approximation o
an infinite chain is reasonable for the several dozens or
dust particles that are involved in a typical experiment. T
one-dimensional array~chain! of rods is also a good firs
approximation since, first, such chains can arise in speci
designed experiments, and it is therefore important to es

//
FIG. 1. Geometry of the rod.
©2003 The American Physical Society02-1
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lish the role of a coupling potential in the horizontaly direc-
tion on the stability of the chain, and second, although
introduction of parallel chains would complicate the mo
structure further, the main mode characteristics for pertur
tions propagating along the chain will survive at least in
linear approximation.

The relevant forces are due to the external potentials
the interparticle interactions. The external potentialFext is a
combination of the potentials due to both gravitation and
external electrodes. The interparticle force is Coulombic
nature. However, since the dust grain is shielded by the
rounding plasma, there is an exponential decay of the in
particle potential with distance, as follows:

Fa~r !5
Qa

4p«0ur u
expS 2

ur u
lD

D , ~1!

wherelD is the plasma Debye length, which is the scale o
which plasma shielding is effective, and as such, is a fu
tion of the plasma parameters~temperature, density, etc.!.

Hence, we can form the Lagrangian

L5
m

2 (
n

S dRn

dt D 2

1
I

2 (
n

F S dfn

dt D 2

~sinun!21S dun

dt D 2G
2S (

n
QaFa1(

n
QaFb1(

n
QbFa1(

n
QbFb

1(
n

QaFext1(
n

QbFextD , ~2!

where the sum is over all the particles, andI is the common
rotational inertia of each particle. Hereu is the angle the rod
makes with thez ~vertical! axis, andf is the angle the pro-
jection of the rod onto thex-y ~horizontal! plane makes with
thex axis ~the direction of the chain of particles!, see Fig. 1.
The first two terms on the right-hand side correspond to
kinetic energy, and terms likeQaFa describe the interaction
on the upper chargeQa of thenth particle with the potentia
Fa due to the upper chargesQa of all the other particles, etc
~The force between the upper and lower charges on a si
particle is, of course, balanced by the stress in the rod c
necting them.! Note the summation implied in the calculatio
of Fa ,b for thenth particle is, in principle, over all the othe
particles. However, we shall only allow the two neare
neighbor interactions in our approximation due to t
screened Coulomb nature of the interparticle interaction.
deed, we would not expect that highly charged rods can
pear at distances significantly less than Debye length. N
that the separation between rods is an adjustable parame
our calcualtions. This separation depends on the param
of the plasma: in the experiments@6#, it varies from 1 mm to
0.3 mm. This scale length is more than or of the order of
Debye length for the experiments, and this justifies our
sumption of the nearest-neighbor interactions.

Modes associated with the center of mass motion
analogous to those in chains of spherical particles@7,8,10# so
here we investigate the rotational behavior, unique for r
like particles, in detail. The Euler-Lagrange equations of
gular motion can then be written down for thenth particle,
02640
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]L
]u̇n

5
]L
]un

, ~3!

and similarly forfn.
In order to compute these derivatives, we must wr

down the displacement vectors from each charge to e
neighboring charge. LetRn locate the center of mass of th
nth dust grain, relative to the equilibrium position. We th
defineSn to be the direction of the upper charge relative
the center of mass, so in spherical coordinates,

Sn5~cosfn sinun, sinfn sinun, cosun!. ~4!

Hence, thenth upper chargeQa is at

an5ndex1Rn1
L

2
Sn, ~5!

and the lower chargeQb is at

bn5ndex1Rn2
L

2
Sn. ~6!

We may now define the four displacement vectorsfrom the
charges on the (n11)th grainto the charges on thenth grain
as follows,

raa
n152dex1~Rn2Rn11!1

L

2
~Sn2Sn11!, ~7!

rba
n152dex1~Rn2Rn11!1

L

2
~Sn1Sn11!, ~8!

rbb
n152dex1~Rn2Rn11!2

L

2
~Sn2Sn11!, ~9!

rab
n152dex1~Rn2Rn11!2

L

2
~Sn1Sn11!. ~10!

Similar equations exist for the vectors from the charges
the (n21)th grain to the charges on thenth grain.

The external potential can be approximated by a parab
potential for small oscillations, whose minimum lies at t
center of mass of a rod (y50,z50). The assumption of an
infinite chain in thex direction removes the need for a co
fining potential in that direction. The external potential
therefore assumed to act in both thez ~vertical! andy direc-
tions, such that the potential energy of the rod, with coor
nates, is

QaFext~an!1QbFext~bn!5kyy
21kzz

2, ~11!

where (y,z) are the coordinates of the upper chargeQa .
Note that they component of the external potential is pure
electrical, and thez component is a combination of the ele
tric and gravitational potentials.

Use of the chain rule now gives rise to the followin
equation of motion forun, including only the two neares
neighbor particle interactions:
2-2
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I @ ün2~ḟn!2 sinun cosun#

52
QaL

2 FFa8~raa
n1!

uraa
n1u

~r aa,x
n1 cosfn cosun1r aa,y

n1 sinfn cosun2r aa,z
n1 sinun!

1
Fa8~raa

n2!

uraa
n2u

~r aa,x
n2 cosfn cosun1r aa,y

n2 sinfn cosun2r aa,z
n2 sinun!

1
Fb8~rba

n1!

urba
n1u

~r ba,x
n1 cosfn cosun1r ba,y

n1 sinfn cosun2r ba,z
n1 sinun!

1
Fb8~rba

n2!

urba
n2u

~r ba,x
n2 cosfn cosun1r ba,y

n2 sinfn cosun2r ba,z
n2 sinun!G1

QbL

2
@a↔b#2Qa

]Fext~an!

]un
2Qb

]Fext~bn!

]un
,

~12!

whereF8(r )5dF/dur u, and where@a↔b# is shorthand for another set of terms which are identical to the first set in sq
brackets on the right-hand side, but witha replaced byb.

The corresponding equation for the azimuthal anglefn is

I sinun~f̈n sinun12ḟn cosunu̇n!52
QaL

2 FFa8~raa
n1!

uraa
n1u

~2r aa,x
n1 sinfn sinun1r aa,y

n1 cosfn sinun!

1
Fa8~raa

n2!

uraa
n2u

~2r aa,x
n2 sinfn sinun1r aa,y

n2 cosfn sinun!

1
Fb8~rba

n1!

urba
n1u

~2r ba,x
n1 sinfn sinun1r ba,y

n1 cosfn sinun!1
Fb8~rba

n2!

urba
n2u

~2r ba,x
n2 sinfn sinun

1r ba,y
n2 cosfn sinun!G1

QbL

2
@a↔b#2Qa

]Fext~an!

]fn
2Qb

]Fext~bn!

]fn
. ~13!
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Note that these equations are extremely nonlinear, involv
sine and cosine dependence on angles, and exponentia
inverse distance dependence contained implicitly in the
tential terms. Moreover, theu andf behavior is coupled. In
order to proceed, we mustlinearizethese equations about a
equilibrium position. We shall call the equilibrium colatitu
dinal and azimuthal angles, about which we consider sm
perturbations, asu0 andf0, respectively, which are commo
to all particles. The analysis then proceeds as follows: lee
be a small perturbation ofu, so thatun5u01en. We may
then approximate

cosun5cosu02sinu0en, ~14!

sinun5sinu01cosu0en, ~15!

and similarly forf by lettingh be a small perturbation from
f0. Note that the linearizing process for terms lik
Fb8(rba

n1)/urba
n1u, in fact, involves taking the zeroth- and firs

order terms in a Taylor expansion of six variables; name
en, en11, en21, hn, hn11, hn21. The full result forun is
02640
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long and complicated, and is written down in the Append
Eq. ~A1!. We simply note that it is coupled and has only
numerical solution.

We next determine the commonequilibriumorientation of
the particles. Thus we seten5en115en215hn5hn11

5hn2150, and let the accelerationün be zero. We find

QaL

2 FFb8~rba
n1!

urba
n1u

2
Fb8~rba

n2!

urba
n2u Gd cosf0 cosu02@a↔b#

2Qa

]Fext~an!

]un
2Qb

]Fext~bn!

]un
50, ~16!

where each term is to be evaluated at the relevant equ
rium orientation. This tells us the form of external potent
required for an equilibrium orientation of (u0 ,f0). How-
ever, as indicated earlier, the external potential of releva
to us is parabolic about the center of mass, Eq.~11!.

Thus the external potential derivatives at each cha
should vanish at the equilibrium; this occurs only at they and
2-3
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z axes for a potential of the form~11!, unlessky5kz . Simi-
larly we must ensure

FFb8~rba
n1!

urba
n1u

2
Fb8~rba

n2!

urba
n2u Gd cosf0 cosu050. ~17!

The result is that equilibria exist in only the following orien
tations ~unless ky5kz); (u0 ,f0)5(0,f0) ~with f0 arbi-
trary!, (p/2,0), or (p/2,p/2), which we draw successivel
as shown in Figs. 2~a!–~c!, respectively. Ifky5kz , equilib-
rium exists for the orientation (u0 ,p/2), where u0 is
arbitrary.

Recall that the chain of rods is located along thex axis, so
that the first and the third equilibria are essentially the sa
the only difference lying in the interaction with the extern
potential. The analysis of oscillations about these equilib
shall occupy the bulk of this paper. Oscillations inu about
the second equilibrium have already been considered in
@10#, and oscillations inf about that equilibrium can be
obtained simply by exchangingky andkz . Sincef is unde-
fined for a vertically oriented rod, we concentrate here on
horizontal equilibrium case (p/2,p/2).

III. AZIMUTHAL MOTION

The perturbation equation describing small oscillations
azimuthal anglefn about the equilibrium Fig. 2~c!, u
5p/2, f5p/2, can be obtained from Eq.~A1! ~see the Ap-
pendix! for theu perturbation equation by rotating they and
z axes about thex axis, so the newz-axis lies along the oldy
axis. The equilibrium is now, in terms of the new pol
angles, (u0850,f0850), and the perturbationh in the old
angle f is the negative of the perturbationh8 in the new
angleu8. The resulting equation forh is

I ḧn52
L2

4 FQaFa9~d!2
Qa

Ld
Fb8~Ld!G~2hn2hn112hn21!

2
d2L2

4 FQa

Ld
2

Fb9~Ld!2
Qa

Ld
3

Fb8~Ld!G ~2hn1hn11

1hn21!1@Qa↔Qb#1
L2

2
kyh

n, ~18!

whereLd
25L21d2. Thus thee and h behaviors decouple

~In fact, they decouple in all the above three equilibriu

FIG. 2. The three equilibrium orientations of the rodlike du
grains.
02640
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cases.! Note the presence of 2hn2hn112hn21 in the first
term. This term will vanish if all the rods rotate together.
we consider the upper chargesQa all moving together, it is
apparent that this interaction should vanish as a result of
(n21)th and (n11)th charges pushing in equal and opp
site directions. However, in the second term, the term 2hn

1hn111hn21 will not vanish. This is a consequence of th
fact that as the rods rotate, the cross interaction betweenQa
and Qb ~on adjacent rods! increases as they come clos
together. The (n11)th and (n21)th contributions become
unbalanced.

To investigate the existence of an oscillatory solution,
compute the Fourier transform of Eq.~18!, which gives the
frequencyv as a function of the wave numberk in the x
direction:

Iv251L2FQaFa9~d!2
Qa

Ld
Fb8~Ld!Gsin2~kd/2!

1
d2L2

Ld
2 FQaFb9~Ld!2

Qa

Ld
Fb8~Ld!Gcos2~kd/2!

1@Qa↔Qb#2
L2

2
ky . ~19!

Now the Debye-Coulomb potential in Eq.~19! has deriva-
tives

Fa8~r !52
Qa

4p«0ur u2
S 11

ur u
lD

DexpS 2
ur u
lD

D , ~20!

Fa9~r !5
Qa

4p«0ur u3 S 212
ur u
lD

1
ur u2

lD
2 D expS 2

ur u
lD

D . ~21!

Hence the productQaFa8 is negative, whileQaFa9 is posi-
tive, as is true for any potential that falls off with distanc
The result is that the coefficients of the oscillatory sine a
cosine terms in Eq.~19! are always positive. Thus the du
particles would always exhibit stable oscillations, except
the presence of the term2kyL

2/2 from the external poten
tial, which acts to pull the grains away from this equilibriu
to thex axis ~wherey50). These competing terms may the
give rise to regions of stable behavior and regions of
stable behavior. Recall that the moment of inertia isI
5mL2/2. Hence the factorL2 cancels throughout and is onl
present, implicitly, through the quantityLd . We may plot the
dispersion relation, by selecting some typical values of
parameters involved:m510215 kg, Q5103e–104e, and
lD5300mm. For the cased'lD , and for the particular
choice of the external potential parameterky510210 kg s22

~which can be controlled in an experiment!, the resulting
dispersion relation is shown in Fig. 3.

Note that the vertical axis is for the square of the norm
ized frequency (v/v0)2, wherev0 is a typical dust plasma
frequency withv0

253Q2/(4p«0mlD
3 ), which is normally a

few hundred radians per second. The horizontal axis i
normalized wave numberklD for the first Brillouin zone.

t

2-4
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This plot clearly shows stable regions, corresponding tov2

.0, and unstable regions corresponding tov2,0 ~i.e., v is
imaginary!.

For a typical choice of the wave number, we can p
(v/v0)2 as a function of a normalized interparticle distan
d/lD ~sinced is typically of the order of the Debye length!,
as shown in Fig. 4. Clearly, at close interparticle distan
the motion is stable, as the particles oscillate under th
mutual repulsion. However, at large distances the exte
potential dominates, and the motion becomes unstable.
is a result of the interparticle force decreasing with incre
ing distance. Note that this instability willalways arise at
large distances, ifky.0. We reiterate that this horizonta
motion is identical to the vertical case under the intercha
ky↔kz .

It is useful to consider the case of small sized rods co
pared with the interparticle separationL!d. Then

Ld5dA11S L

dD 2

'dF11
1

2 S L

dD 2G . ~22!

It then makes sense to takeQa5Qb since Q5Q(z) for
grains in a vertical sheath potential, and the upper and lo
charges will essentially be at the same vertical position. O
finds

FIG. 3. Normalized frequency squared versus normalized w
number for perturbations in the anglef, traveling in thex direction.
The equilibrium orientation is (u05p/2,f05p/2). Herev0 is the
dust plasma frequency,d5lD , andky510210 kg s22.

FIG. 4. Normalized frequency squared versus interparticle
tance for perturbations in the anglef, traveling in thex direction.
HereklD58, and the other parameters are same as Fig. 3.
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4
mv25QaFFa9~d!2

1

d
Fa8~d!2

1

2

L2

d2
Fa9~d!

1
1

2

L2

d3
Fa8~d!G1Qa

L2

d F 1

d2
Fa8~d!2

1

d
Fa9~d!

1
1

2
Fa-~d!Gcos2~kd/2!2

1

4
ky . ~23!

Here the first term on the right-hand side is independen
the wave number, while the second is not. We can unders
this physically as follows. When (L/d) is small, a rotation of
thenth dust grain sets up oscillations since it becomes clo
to the center of mass~and hence the dust particle on averag!
of the relevant nearest neighbor, regardless of the neighb
orientation. This is embodied in the first term. Of second
importance is the actual orientation of the neighbor, which
seen in the term involving wave number: note theL2 factor,
which shows that this correction is small.

IV. COLATITUDINAL MOTION

We now investigate the behavior of the perturbatione of
the colatitudinal angleu, recalling thate andh completely
decouple in the linear approximation. The equation of m
tion in the second~horizontal! equilibrium case is

I ën52
L2

4

Qa

d
Fa8~d!~2en2en112en21!

1
L2

4

Qa

Ld
Fb8~Ld!~2en2en112en21!1@Qa↔Qb#

2
L2

2
~kz2ky!en. ~24!

Note that this timeall the dust particle interaction terms a
of the form 2en2en112en21, and so the net force~apart
from external influences! is zero if the rods rotate togethe
This expresses the fact that each plane~given by f0[p/2,
and allu0 equal! is identical. Moreover, in the absence of a
effective external potential~one in which ky5kz) there
would exist equilibria at anyu0 value, since we would have
no preferred direction. The stability of cases such as th
will be pursued in the following section.

Fourier transforming Eq.~24! leads to the following dis-
persion relation:

Iv25L2FQa

d
Fa8~d!2

Qa

Ld
Fb8~Ld!Gsin2~kd/2!

1@Qa↔Qb#1
L2

2
~kz2ky!. ~25!

Once again, note the oscillatory dependence on the w
number. The first term on the right-hand side is this tim
negative, sinceQF8(r ),0 andd,Ld . Thus the dust parti-
cle’s mutual repulsion causes instability. This results fro

e

-

2-5
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theQaFa interaction pushing away from equilibrium, dom
nating the cross interactionQaFb that pushes back. Onc
again it is the fact that the dust grain’s Debye-Coulomb
tential falls off with distance that a net force results. Note
competing terms from the external potential. In the horizo
tal case, one needskz.ky for the possibility of stability~of
course, wave number gaps are still possible!. Note that simi-
lar dependence exhibits pairs of unbound spherical parti
levitating in the confining potential inx andz directions@12#.
We also recall that the interchangekz↔ky gives the vertical
equilibrium case. By selectingkz.ky , the dispersion rela-
tion will be qualitatively the same as in Fig. 3.

However, the behavior of the frequency as a function
interparticle distance shows a noticeable difference to
azimuthal oscillation case, as shown in Fig. 5. Note the
versed characteristic, where stability now increases as
particles get further apart. We explain this as follows:
close distances the motion is highly unstable, since the
pulsion due to theQaFa andQbFb terms is so strong. How
ever, in the far region, it is the sign ofkz2ky which deter-
mines stability. Again by takingL!d, we aproximate

1

2
mv252Qa

L2

d2 FFa9~d!2
1

d
Fa8~d!Gsin2~kd/2!

1
1

2
~kz2ky!. ~26!

We see that the oscillations become solely due to the con
ing potential asL→d. In other words, the two competin
terms in the coefficient of sin2(kd/2) in Eq. ~26! have can-
celed one another. Note, however, that it is not strictly va
to let L50, since we cannot meaningfully discuss rotation
a rod with no length, and we have already divided byL2.

V. INSTABILITY

We now address the important issue of what happen
the motion is unstable. Instability implies that the rods m
switch from the horizontal to the vertical equilibrium~or vice
versa! depending on the sign ofkz2ky . However, our analy-
sis is only valid for small perturbation angles, and brea

FIG. 5. Normalized frequency squared versus interparticle
tance for perturbations in the angleu, traveling in thex direction.
HereklD58.
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down at large amplitudes. In order to examine what ensue
the rods lie near an unstable orientation, we must cons
what will happen physically: the rods will, in fact, move i
opposite directions to move away from one another. Thus
the average, the even rods, say, will move clockwise and
odd rods counter clockwise~or vice versa!. Hence it may be
that there exists some intermediate value of stability betw
the vertical and horizontal. Our analysis is now differe
from earlier, since we are allowing alternate rods to ha
opposite equilibrium orientations. By considering the vertic
case, this corresponds to equilibria atu0 and2u0 alternately.
Let the even rods be described by perturbationsen in u as
before, and the odd neighbors byzn21 andzn.

The equilibrium condition is now found to be given by

sin~2u0!F2
QaFa8~R1!1QbFb8~R1!

2R1
1

QbFb8~R2!

R2
2

ky2kz

8 G
50, ~27!

where R15Ad21L2 sin2 u0, and R25Ad21L2 cos2 u0. The
first order perturbation equation is

I z̈n5
L2

4 F2
QaFa8~R1!1QbFb8~R1!

R1
1

2QaFb8~R2!

R2
G

3@2 cos~2 u0!zn2hn2hn21#

2
L2

4
~ky2kz!cos~2u0!zn. ~28!

Thus equilibrium occurs ifu050 ~the vertical case!, or
u05p/2 ~the horizontal case!, or if the term in brackets in
Eq. ~27! vanishes. In the case wherekz5ky , and whenQa
5Qb , an equilibrium occurs atu05p/4, when the charges
are farthest away from one another, and neighbors are ou
phase byp/2. In this case the right-hand side of the pertu
bation equation~28! vanishes; this is because for an extern
potential symmetric about thex axis, an arbitrary rotation of
u0 may be made as long as neighbors are at right angle
each other. If the potential is not symmetric (kyÞkz),
equilibria may occur at intermediate angles differe
from u05p/4.

Hence the described system of rods can undergo ph
transitions from one state to another, i.e., vertical to horiz
tal and vice versa, or to an intermediate equilibrium, dep
dent on the easily adjustable external potentials. In fact,
a natural extension to see that this is also true of the th
equilibrium case mentioned in Sec. II, corresponding to
equilibrium at (p/2,0). Transitions between the vertical an
horizontal equilibria have been observed in experiments@6#.
This process has a relation to processes in liquid crys
@11#, where a state of matter exists between the solid
liquid phases, wherein rod-shaped molecules exhibit a pa
alignment, rather than a rigid array seen in crystals. The
rection of this partial alignment~and phase! can be altered by
an external influence.

-
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VI. DISCUSSION AND CONCLUSIONS

The above analysis has ignored an important real fea
of plasmas: friction. The motion of dust particles through t
plasma medium will induce a resistive response from
plasma. Friction’s importance depends on the plasma par
eters. If the ionization percentage is low, then the friction d
to neutrals will dominate. If the ionization is high, then th
friction from ions also becomes important. Now since t
Lagrangian formulation cannot deal with nonconservat
forces such as friction, we can only include friction after w
have ascertained the equations of motion.

Thus, in the linear approximation, we may include a g
neric gu̇ term, whereg is the frictional constant. Thus Eq
~24! becomes

I ën1gėn52
L2

4

Qa

d
Fa8~d!~2en2en112en21!

1
L2

4

Qa

Ld
Fb8~Ld!~2en2en112en21!

1@Qa↔Qb#2
L2

2
~kz2ky!en, ~29!

and the new frequencyv̄ expressed in terms of the old on
becomes

v̄52 i
g

2I
1Av22g2/4I 2, ~30!

where the term2 ig/2I is associated with damping, an
Av22g2/4I 2 shows a decrease in frequency. Note that cr
cal damping occurs whenv25g2/4I 2. Further generaliza-
tions of the main results taking into account friction a
straightforward. We note that the actual friction with neut
particles is geometry dependent. In the case of the ado
model of a rotator with two spherical ball-like particles co
nected by the infinitely thin rod, the friction constantgamma
which is determined by the neutral gas pressure and the c
section~i.e., geometry! is just twice that of the single spher
cal particle. In the case of the real rod geometry with fin
rod radius, the friction constant will naturally depend on t
particular geometry. Note that the wave damping is a
determined by the moment of inertia as can be seen f
Eq. ~30!.

We began by noting that in a plasma, dust particles u
ally acquire a negative charge, and so can levitate if a ne
tively biassed electrode is placed below them. The case
one-dimensional chain of levitating rod-shaped particles w
investigated; we found that the different rotational modes
oscillation decoupled in the linear approximation. The s
cific behavior of the modes was analyzed through the dis
sion relations. An oscillatory dependence on the wave nu
ber, and a critical dependence on the relative strengths o
confining potential were found. The characteristic frequen
range for these oscillatory modes is of the order of the d
02640
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plasma frequencyv0, as can be seen from Figs. 3–5. W
note that the oscillations of rodlike particles also sho
modes associated with the motion of the center of mas
the rods. Dispersion characteristics of these modes are s
lar to those of spherical particles of comparable mass
charge, see Ref.@10#, namely, the optic-mode-like ‘‘bend
ing’’ mode related to vertical motions of the centers of ma
and the acoustic mode related to horizontal~in the direction
of the mode propagation! motions of the centers of mass
The characteristic frequency of the first mode is determin
by the confining potential in the vertical direction; in expe
ments, and this frequency can be of the order of or hig
than the dust plasma frequency depending on the partic
experimental conditions@13#. The characteristic frequenc
range of the acoustic dust-lattice mode is lower, rang
from zero to v0. The azimuthal and colatitudinal mode
showed opposite characteristics in the near and far inter
ticle distance regimes, respectively. The rods were t
shown to move, or switch, to the relevant equilibrium, d
pendent on the confining parameters. This is an example
phase change phenomenon which is analogous to that
served in liquid crystals. The inclusion of the resistive effe
of friction was an immediate and straightforward extensio

The ability to line up rods in different directions, by a
ternating the relative sizes of the confining potentials, i
powerful tool. This can be of use in, for example, plasm
coating, if rod-shaped objects are used as the basis to
strength to a material. The nanotube industry is another n
area where this may find application. The elongated shap
these carbon based molecules shows an obvious conne
to our discussion of ‘‘rods,’’ although the particular ro
shape analyzed in this paper is just a first approximation
the true geometry of a nanotube@14#.

We have neglected here some other plasma effects,
as the production of wakes due to the ion flow to the el
trode. Since we consider dust charge interactions primaril
the horizontal plane, the modification of the Debye poten
by the wake is only weak. We note that the ion wake effe
can cause instabilities in the horizontal lattice wave propa
tion; for spherical particles, this was shown in Ref.@15#. It is
natural to expect a similar type of instability for the arrays
rods, and this is an interesting topic for future research. A
for vertically oriented chains of dust charges, the wake
tential has large effects~for chains of spherical grains, thi
was demonstrated in Ref.@16#!. Finally, for structures levi-
tating in the plasma bulk~as, e.g., under microgravity con
ditions!, the ion flow is absent.

There are several possibilities for further work. First, t
charge is, in fact, a function of vertical height,Q5Q(z).
Next, the extension to a two or three-dimensional array m
lead to further interesting results. An important extension
to a general charge distribution along the rod, rather than
two-point particles we have considered. Finally, by includi
higher order terms in the analysis, nonlinear waves and
citations, as well as their interactions can be investigated
such chains.
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APPENDIX

The first-order equation of motion fore, about an arbitrary position (u0 ,f0) is as follows:

I ën52
QaL

2 F S L

2
Fa9~d!2

L

2d
Fa8~d! D @cosf0 cosu0~2en2en112en21!

2sinf0 sinu0~2hn2hn112hn21!#cosf0 cosu01
L

2d
Fa8~d!~2en2en112en21!

1
Fb8~rba

n1!

urba
n1u

S 2d cosf0 cosu01d cosf0 sinu0en1d sinf0 cosu0hn2
L

2
~en2en11! D

1
Fb8~rba

n2!

urba
n2u

S d cosf0 cosu02d cosf0 sinu0en2d sinf0 cosu0hn2
L

2
~en2en21! D

2d cosf0 cosu0~en1en11!
L

2 S Fb9~rba
n1!

urba
n1u2

2
Fb8~rba

n1!

urba
n1u3 D ~r ba,x

n1 cosf0 cosu01r ba,y
n1 sinf0 cosu02r ba,z

n1 sinu0!

1d cosf0 cosu0~en1en21!
L

2 S Fb9~rba
n2!

urba
n2u2

2
Fb8~rba

n2!

urba
n2u3 D ~r ba,x

n2 cosf0 cosu01r ba,y
n2 sinf0 cosu02r ba,z

n2 sinu0!

2d cosf0 cosu0~hn1hn11!
L

2 S Fb9~rba
n1!

urba
n1u2

2
Fb8~rba

n1!

urba
n1u3 D

3~2r ba,x
n1 sinf0 sinu01r ba,y

n1 cosf0 sinu0!1d cosf0 cosu0~hn1hn21!
L

2 S Fb9~rba
n2!

urba
n2u2

2
Fb8~rba

n2!

urba
n2u3 D

3~2r ba,x
n2 sinf0 sinu01r ba,y

n2 cosf0 sinu0!G1
QbL

2
~a↔b!2Qa

]Fext~an!

]un
2Qb

]Fext~bn!

]un
, ~A1!

where each of the above terms, such asrba
n1 , is to be evaluated at (u0 ,f0).
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